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Abstract
Maximum entropy discrimination (MED) is a gen-
eral framework for discriminative estimation based
on the well known maximum entropy principle,
which embodies the Bayesian integration of prior
information with large margin constraints on ob-
servations. It is a successful combination of maxi-
mum entropy learning and maximum margin learn-
ing, and can subsume support vector machines
(SVMs) as a special case. In this paper, we
present a multi-view maximum entropy discrimi-
nation framework that is an extension of MED to
the scenario of learning with multiple feature sets.
Different from existing approaches to exploiting
multiple views, such as co-training style algorithms
and co-regularization style algorithms, we propose
a new method to make use of the distinct views
where classification margins from these views are
required to be identical. We give the general form
of the solution to the multi-view maximum entropy
discrimination, and provide an instantiation under
a specific prior formulation which is analogical to
a multi-view version of SVMs. Experimental re-
sults on real-world data sets show the effectiveness
of the proposed multi-view maximum entropy dis-
crimination approach.

1 Introduction
Maximum entropy discrimination (MED) is an effective ap-
proach to discriminative training of model parameters, and
relies on the maximum entropy or minimum relative entropy
principle and the maximum margin principle. It can make
full use of the merits of generative and discriminative mod-
eling, and has been successfully applied to a large number of
machine learning problems.

MED was first presented by Jaakkola et al. [1999], and
was applied to anomaly detection and classification involv-
ing partially labeled examples. Jebara and Jaakkola [2000]
employed MED for feature selection by introducing a selec-
tor variable into the discrimination function. Jebara [2004;
2011] extended MED to the problem of multi-task feature and
kernel selection. On the theoretical side, Long and Wu [2004]
established a mistake bound for an ensemble method for

MED and proved a more refined bound that leads to a nearly
optimal algorithm for learning disjunctions based on the max-
imum entropy principle.

Recently, Zhu and Xing [2009] applied MED to structure
learning which posses the advantages of probabilistic models
and the maximum margin approach. By adopting a Laplace
prior, Zhu et al. [2008a] obtained a Laplace maximum margin
Markov network which is a sparse model suitable for learn-
ing complex structures. Zhu et al. [2008b] also presented a
partially observed MED Markov network to deal with the sit-
uation where latent variables exist.

Multi-view learning (MVL) is an emerging direction which
considers learning with multiple feature sets. Its popularity is
mainly motivated by the fact that many real-world data have
multiple representations. For example, a web page can be
described by words appearing on the web page itself and
words underlying all links pointing to the web page from
other pages. In multimedia content understanding, multime-
dia segments can be simultaneously described by their video
signals and audio signals. But it should be noted that when
there are no natural multiple views, manually generated mul-
tiple views can also be helpful [Nigam and Ghani, 2000].
Among the current MVL methods, we can identify two main
categories: co-training style algorithms and co-regularization
style algorithms.

Co-training style algorithms are inspired by the co-training
algorithm [Blum and Mitchell, 1998], which iteratively runs
the following procedure untill a termination condition is satis-
fied: Two learners are separately obtained from two views ini-
tially, and then the most confident examples identified by one
learner are fed to the other to improve their learning perfor-
mance. Recently, Yu et al. [2011] proposed a Bayesian undi-
rected graphical model for co-training. Sun and Jin [2011]
proposed a robust co-training algorithm, which integrates
canonical correlation analysis to examine the predictions of
co-training on unlabeled data. In addition to classification,
the idea of co-training was later used for clustering [Bickel
and Scheffer, 2004; Kumar and Daumé III, 2011]. Theo-
retical work also attracted many researchers. For example,
Dasgupta et al. [2001] gave a PAC-style bound on the gen-
eralization error, Balcan et al. [2005] presented a weaker as-
sumption called ε-expansion to guarantee the success of co-
training, and Wang and Zhou [2010] provided a sufficient and
necessary condition for co-training to succeed.
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The core idea of co-regularization style algorithms is that
minimizing the distinction between the functions of two
views acts as one part of the objective function. Repre-
sentative methods include [Sindhwani et al., 2005; Kumar
et al., 2011; Sun, 2011; White et al., 2012]. There are
also some theoretical research on co-regularization style al-
gorithms. Rosenberg and Bartlett [2007] provided a tight
bound on the Rademacher complexity of the co-regularized
hypothesis class in terms of the kernel matrices from each
reproducing kernel Hilbert space (RKHS). Sindhwani and
Rosenberg [2008] constructed a single, new RKHS which can
transform standard supervised algorithms to multi-view semi-
supervised algorithms. Sun and Shawe-Taylor [2010] charac-
terized the generalization error of a multi-view SVM in terms
of the margin bound and derived the empirical Rademacher
complexity of the considered function class.

Inspired by the recent success of MVL, in this paper we
extend MED to the MVL setting. But different from the
previous two kinds of methods combining multiple views,
we propose a new approach to exploiting multiple views.
We enforce the margins from two views to be identical to
yield a new MVL mechanism, which extends MED to our
new framework multi-view maximum entropy discrimination
(MVMED). Then we derive the solution to the optimization
problem of MVMED, and give one instantiation by using a
specific prior formulation.

The rest of the paper is organized as follows. Section
2 briefly reviews MED. Section 3 describes our proposed
MVMED. Section 4 reports the experiments on three real-
world data sets and makes comparisons. Finally, we give con-
clusions and point out possible future work in Section 5.

2 Maximum Entropy Discrimination

MED is similar to Bayesian learning in the sense that the
posterior of model parameters requires to be inferred. But
it integrates the large margin principle and may not need the
formulation of generative distributions for data.

Now, we introduce the general learning setup of MED.
Suppose we have a data set {Xt, yt} with N examples where
Xt indicates the tth input, yt indicates the corresponding out-
put, and yt ∈ {±1}. If we have two class-conditional prob-
ability distributions over the examples, i.e., p(Xt|θyt) with
parameters θyt , the decision rule follows the sign of the dis-
criminant function

L(Xt|Θ) = log
p(Xt|θ1)

p(Xt|θ−1)
+ b, (1)

where Θ = {θ1, θ−1, b} includes the model parameters and
b is a bias term that can be expressed as a log-ratio of class
priors b = log

(
p+/(1− p+)

)
with p+ being the prior of the

positive class. Alternatively, the discriminant function can
be directly described by a parameter formulation without any
reference to probability models. MED applies well to any of
the above two cases.

The general MED is formulated as follows:
minp(Θ,γ)KL

(
p(Θ,γ) ‖ p0(Θ,γ)

)
s.t.
∫
p(Θ,γ)[ytL(Xt|Θ)− γt]dΘdγ ≥ 0

1 ≤ t ≤ N,

(2)

where γ = {γ1, . . . , γN} specifies the desired classification
margins which reflect the large margin principle as in SVMs.
Here, instead of seeking a single parameter estimation, MED
considers a more general problem of finding a distribution
p(Θ,γ) over the parameters and margins, from which we
can get the parameter distribution p(Θ) by marginalization.
Correspondingly, it uses a convex combination of discrimi-
nant functions, i.e.,

∫
p(Θ)L(Xt|Θ)dΘ rather than one sin-

gle discriminant function to make model averaging for de-
cisions. As Domingos [2000] proved, model averaging can
improve the classification performance by means of alleviat-
ing the overfitting problem. In addition, the solution of MED
is unique as long as it exists since the optimization prob-
lem in (2) is convex with respect to p(Θ,γ) [Jaakkola et al.,
1999].

After adding a set of dual variables, one for each constraint,
the Lagrangian of the optimization problem can be written as

L =

∫
p(Θ,γ)log

p(Θ,γ)

p0(Θ,γ)
dΘdγ

−
N∑
t=1

∫
p(Θ,γ)λt[ytL(Xt|Θ)− γt]dΘdγ.

(3)

In order to find the solution to (2), we require

∂L

∂p(Θ,γ)
= log

p(Θ,γ)

p0(Θ,γ)
+ 1

−
N∑
t=1

λt[ytL(Xt|Θ)− γt]

= 0,

(4)

which results in the following theorem [Jaakkola et al., 1999].
Theorem 2.1 The solution to the MED problem has the fol-
lowing general form

p(Θ,γ) =
1

Z(λ)
p0(Θ,γ)e

∑N
t=1 λt[ytL(Xt|Θ)−γt], (5)

where Z(λ) is the normalization constant (partition function)
and λ = {λ1, ..., λN} defines a set of non-negative Lagrange
multipliers, one for each classification constraint. λ is set by
finding the unique maximum of the following jointly concave
objective function

J(λ) = −logZ(λ). (6)

Whether the solution to MED can be found depends en-
tirely on whether the partition functionZ(λ) can be evaluated
in a closed form, which is given as

Z(λ) =

∫
p0(Θ,γ)e

∑N
t=1 λt[ytL(Xt|Θ)−γt]dΘdγ. (7)
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After λ is obtained, the following formula is used to predict
the label of a new example X

ŷ = sign
(
Ep(Θ)[L(X|Θ)]

)
. (8)

3 Multi-view Maximum Entropy
Discrimination

As we have mentioned above, MED incorporates the princi-
ples of maximum entropy and maximum margin, which can
provide a good justification for its successful applications.
In addition, the recent MVL shows that simultaneously us-
ing multiple feature sets can further improve the performance
over using a single feature set. But as far as we know, there
is no research on MVMED yet. Our work in this paper aims
to fill the gap and investigate the feasibility of MVMED. We
also propose a novel approach to exploiting multiple views
which is completely different from existing approaches.

We enforce the margins from two views to be identical,
which is a new attempt to combine multiple views. This
means that the classification confidences from different views
are deemed to match each other exactly. Another benefit
of this kind of “margin consistency” is that the solution to
MVMED will be convenient to be computed.

Suppose the data set is {X1
t , X

2
t , yt} with N examples

where X1
t and X2

t indicate the tth input from view 1 and
view 2, respectively, and yt ∈ {±1} is the label. Our
MVMED considers a joint distribution of Θ1, Θ2 and γ
where Θ1 = {θ1, b1}, Θ2 = {θ2, b2}, and the common
margin vector γ = {γ1, . . . , γN}. Formally, the MVMED
framework is formulated as follows:



minp(Θ1,Θ2,γ)KL
(
p(Θ1,Θ2,γ) ‖ p0(Θ1,Θ2,γ)

)
s.t.
∫
p(Θ1,Θ2,γ)[ytL1(X1

t |Θ1)− γt]dΘ1dΘ2dγ ≥ 0∫
p(Θ1,Θ2,γ)[ytL2(X2

t |Θ2)− γt]dΘ1dΘ2dγ ≥ 0

1 ≤ t ≤ N,
(9)

where L1(X1
t |Θ1) and L2(X2

t |Θ2) are discriminant func-
tions from view 1 and view 2, respectively. The Lagrangian
of the optimization problem is

L =

∫
p(Θ1,Θ2,γ)log

p(Θ1,Θ2,γ)

p0(Θ1,Θ2,γ)
dΘ1dΘ2dγ

−
N∑
t=1

∫
p(Θ1,Θ2,γ)λ1,t[ytL1(X1

t |Θ1)− γt]dΘ1dΘ2dγ

−
N∑
t=1

∫
p(Θ1,Θ2,γ)λ2,t[ytL2(X2

t |Θ2)− γt]dΘ1dΘ2dγ,

(10)
where λ1 = {λ1,1, . . . , λ1,N} and λ2 = {λ2,1, . . . , λ2,N}
are Lagrange multipliers for view 1 and view 2, respectively.
In order to find the solution to (9), we require

∂L

∂p(Θ1,Θ2,γ)
= log

p(Θ1,Θ2,γ)

p0(Θ1,Θ2,γ)
+ 1

−
N∑
t=1

λ1,t[ytL1(X1
t |Θ1)− γt]

−
N∑
t=1

λ2,t[ytL2(X2
t |Θ2)− γt]

= 0,

(11)

which results in the following theorem.
Theorem 3.1 The solution to the MVMED problem has the
following general form

p(Θ1,Θ2,γ) =
1

Z(λ1,λ2)
p0(Θ1,Θ2,γ)

e

(∑N
t=1 λ1,t[ytL1(X

1
t |Θ1)−γt]+

∑N
t=1 λ2,t[ytL2(X

2
t |Θ2)−γt]

)
,

(12)
where Z(λ1,λ2) is the normalization constant and λ1 =
{λ1,1, ..., λ1,N}, λ2 = {λ2,1, ..., λ2,N} define two sets of
non-negative Lagrange multipliers, one for each classifica-
tion constraint. λ1 and λ2 are set by finding the unique max-
imum of the following jointly concave objective function

J(λ1,λ2) = −logZ(λ1,λ2). (13)

After λ1 and λ2 are obtained, the following two formulae
are used to predict the label of a new example (X1, X2) from
view 1 and view 2, respectively

ŷ1 = sign
(∫

p(Θ1,Θ2)L1(X1|Θ1)dΘ1dΘ2

)
, (14)

ŷ2 = sign
(∫

p(Θ1,Θ2)L2(X2|Θ2)dΘ1dΘ2

)
. (15)

We can also make predictions by using the two views together

ŷ = sign
(1

2

∫
p(Θ1,Θ2)

(
L1(X1|Θ1) + L2(X2|Θ2)

)
dΘ1dΘ2

)
.

(16)

3.1 Instantiation of MVMED
The prior p0(Θ1,Θ2,γ) plays an important role in our
MVMED framework as shown in (12). Now we instantiate
our MVMED with a concrete prior formulation. Suppose

p0(Θ1,Θ2,γ) = p0(Θ1)p0(Θ2)p0(γ)

= p0(θ1)p0(b1)p0(θ2)p0(b2)p0(γ),
(17)

where p0(b1), p0(b2) approach a non-informative Gaussian
prior, p0(θ1), p0(θ2) are both Gaussian distributed with mean
0 and identity covariance I, and the prior over the margin con-
straints γ is assumed to be fully factored

p0(γ) =
N∏
t=1

p0(γt), (18)
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with p0(γt) = ce−c(1−γt) and γt ≤ 1. A penalty is incurred
for margins smaller than 1− 1/c (the prior mean of γt) while
vanishes otherwise. In fact, this choice of the margin prior
corresponds closely to the use of slack variables and additive
penalties in SVMs.

Then the normalization constant in (12) can be obtained as

Z(λ1,λ2) =

∫
p0(Θ1,Θ2,γ)

e

(∑N
t=1 λ1,t

[
ytL1(X

1
t |Θ1)−γt

]
+
∑N
t=1 λ2,t

[
ytL2(X

2
t |Θ2)−γt

])
dΘ1dΘ2dγ

=

∫
N (θ1|0, I)N (b1|0,σ1

2)N (θ2|0, I)N (b2|0,σ2
2)

N∏
t=1

ce−c(1−γt)

e

(∑N
t=1 λ1,t

[
ytL1(X

1
t |Θ1)−γt

]
+
∑N
t=1 λ2,t

[
ytL2(X

2
t |Θ2)−γt

])
dθ1dθ2db1db2dγ

= e

(
1
2

∑N
t,τ=1 λ1,tλ1,τytyτX

1
tX

1
τ+

1
2

∑N
t,τ=1 λ2,tλ2,τytyτX

2
tX

2
τ

)
e

(
σ1

2

2

(∑N
t=1 λ1,tyt

)2
+

σ2
2

2

(∑N
t=1 λ2,tyt

)2)
N∏
t=1

( c

c− λ1,t − λ2,t
e−λ1,t−λ2,t

)
,

(19)
where we have used the fact that L1(X1

t |Θ1) = θ1X
1
t + b1

and L2(X2
t |Θ2) = θ2X

2
t + b2. We substitute (19) into (13)

and get

J(λ1,λ2) =

N∑
t=1

(
λ1,t + λ2,t + log

(
1− λ1,t + λ2,t

c

))
− 1

2

N∑
t,τ=1

λ1,tλ1,τytyτX
1
tX

1
τ

− 1

2

N∑
t,τ=1

λ2,tλ2,τytyτX
2
tX

2
τ

− σ1
2

2

( N∑
t=1

λ1,tyt

)2
− σ2

2

2

( N∑
t=1

λ2,tyt

)2
.

(20)

Here, λ1 ≥ 0, λ2 ≥ 0. Since σ1
2 → ∞ and σ2

2 → ∞
correspond to using non-informative priors on the bias terms
b1,t and b2,t, the above dual objective function requires the
constraints

∑N
t=1 λ1,tyt = 0 and

∑N
t=1 λ2,tyt = 0. Thus we

have the following dual optimization problem



max
λ1,λ2

N∑
t=1

(
λ1,t + λ2,t + log

(
1− λ1,t + λ2,t

c

))
− 1

2

N∑
t,τ=1

λ1,tλ1,τytyτX
1
tX

1
τ

− 1

2

N∑
t,τ=1

λ2,tλ2,τytyτX
2
tX

2
τ

s.t. λ1 ≥ 0,λ2 ≥ 0

N∑
t=1

λ1,tyt = 0,
N∑
t=1

λ2,tyt = 0.

(21)

The Lagrange multipliers λ1 and λ2 are recovered by solv-
ing the convex optimization problem (21), whose non-zero
values indicate support vectors. Then the prediction rules for
view 1 and view 2 on a new example (X1, X2) are respec-
tively

ŷ1 = sign
( N∑
t=1

λ1,tytX
1
tX

1 + b̂1

)
, (22)

ŷ2 = sign
( N∑
t=1

λ2,tytX
2
tX

2 + b̂2

)
, (23)

where b̂1 and b̂2 are given by the Karush-Kuhn-Tucker (KKT)
conditions using support vectors. If classifiers from two
views are combined together to make predictions, the pre-
diction rule can be given analogously from (16).

3.2 Relationship to SVM-2K
This section will discuss the relationship between our instan-
tiation of MVMED and an MVL algorithm SVM-2K [Far-
quhar et al., 2005]. In order to facilitate the comparison and
analysis, we rewrite (21) as (24) by replacing X1

tX
1
τ , X2

tX
2
τ

with Mercer kernel functions κ(X1
t , X

1
τ ), κ(X2

t , X
2
τ ) and set-

ting g1,t = λ1,tyt , g2,t = λ2,tyt, and the dual form of SVM-
2K is given in (25).



max
N∑
t=1

(
λ1,t + λ2,t + log

(
1− λ1,t + λ2,t

c

))
− 1

2

N∑
t,τ=1

g1,tg1,τκ(X1
t , X

1
τ )

− 1

2

N∑
t,τ=1

g2,tg2,τκ(X2
t , X

2
τ )

s.t. g1,t = λ1,tyt, g2,t = λ2,tyt, 1 ≤ t ≤ N
N∑
t=1

g1,t = 0 =
N∑
t=1

g2,t

λ1 ≥ 0,λ2 ≥ 0.

(24)
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

max
N∑
t=1

(λ1,t + λ2,t)

− 1

2

N∑
t,τ=1

g1,tg1,τκ(X1
t , X

1
τ )

− 1

2

N∑
t,τ=1

g2,tg2,τκ(X2
t , X

2
τ )

s.t. g1,t = λ1,tyt − β+
t + β−t , g2,t = λ2,tyt + β+

t − β−t
N∑
t=1

g1,t = 0 =
N∑
t=1

g2,t

0 ≤ λ1,t ≤ C1, 0 ≤ λ2,t ≤ C2

0 ≤ β+/−
t , β+

t + β−t ≤ D
1 ≤ t ≤ N.

(25)
By inspection, we find that compared to each other, (24)

has an additional term log
(

1 − λ1,t+λ2,t

c

)
in the objective

function, while (25) has additional β+
t − β−t in g1,t and

g2,t. In fact, they both play the role of combining two views,
though in different fashions. If we set c→∞ in (24) and set
β+
t = β−t = 0, C1 → ∞, C2 → ∞ in (25) , the two formu-

lae will be exactly identical. However, it should be noted that
our MVMED framework is much more flexible than SVM-
2K, since we can reach different instantiations in terms of
different prior specifications.

4 Experiments
In this section, we evaluate our proposed MVMED on three
real-world data sets: web-page classification, ionosphere
classification and advertisement classification.

For all the experiments, given a division of the training and
test set, we use one half of the test set as a validation set
for parameter selection and the other half for test. The aver-
age accuracies obtained by ten random divisions of the train-
ing and test sets are reported. The parameter c in MVMED
is chosen from {2−5, 2−4, ..., 25}. Two single-view meth-
ods MED1 and MED2 are employed to compare with our
MVMED. In addition, the MVL method SVM-2K is also
used for comparison. For MVMED and SVM-2K, besides
the prediction functions sign(f1) and sign(f2) from the sep-
arate views, we also consider the hybrid prediction function
sign

(
(f1 + f2)/2

)
and the one with the highest validation ac-

curacy will be selected.
We first report the average accuracies and standard devia-

tions of the four methods on data sets with only one tenth of
the data as the training set in Table 1. Then we increase the
training set sizes gradually, and show their performances in
Figure 1.

4.1 Web-Page Classification
The data set for this experiment consists of 1051 two-view
web pages collected from computer science department web

sites at four universities: Cornell University, University of
Washington, University of Wisconsin, and University of
Texas. There are 230 course pages and 821 non-course pages.
The two natural views are words occurring in a web page and
words appearing in the links pointing to that page [Blum and
Mitchell, 1998; Sindhwani et al., 2005]. The dimensions of
the two views are 2333 and 87, respectively. For convenience,
we reduce the dimension of view 1 from 2333 to 500 via prin-
cipal component analysis (PCA).

Clearly, Table 1 indicates that MVMED is superior to
single-view MED1, single-view MED2 and SVM-2K. We
can also find that SVM-2K performs better than single-view
MED1 but worse than single-view MED2. Figure 1(a) with
varying training sizes also shows that our MVMED consis-
tently outperforms the other three methods.

4.2 Ionosphere Classification
The ionosphere data set origins from UCI,1 and includes 351
instances in total which are divided into 225 “good” (posi-
tive) instances and 126 “bad” (negative) instances. This data
set has only one view, but we generate the other view through
PCA. Now, the two views have 35 and 24 dimensions, respec-
tively.

The experimental results are shown in Table 1 and Fig-
ure 1(b), from which we can see that MVMED performs the
best among all the methods. SVM-2K performs better than
single-view MED1 but worse than single-view MED2. From
Figure 1(b), we can also find that although MVMED and
single-view MED2 need fewer training data to reach a high
accuracy, MVMED is more stable than single-view MED2.

4.3 Advertisement Classification
The data set consists of 3279 examples including 459 ads im-
ages (positive examples) and 2820 non-ads images (negative
examples) [Kushmerick, 1999]. The first view describes the
image itself (words in the image’s URL, alt text and caption),
while the other view contains all other features (words from
the URLs of the pages that contain the image and the image
points to). Here, we randomly select 600 examples therein to
form the used data set.

From Table 1 and Figure 1(c), we can find that our method
MVMED performs better than all the other methods. SVM-
2K performs the worst in the beginning, but then performs
nearly as well as single-view MED1, though still behaves
worse than single-view MED2 and MVMED.

4.4 Summary
From the above experiments, we can find that our MVMED
performs the best. Another MVL method SVM-2K performs
not as good as the MVMED, and sometimes is even worse
than single-view MEDs. In a nutshell, the new MVMED
framework is effective.

5 Conclusion and Future Work
We have proposed an MVMED framework which is an exten-
sion of MED to the scenario of learning with multiple views

1Data available at http://archive.ics.uci.edu/ml/.
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Data single-view MED1 single-view MED2 SVM-2K MVMED
Web-page 77.74±1.43 88.75±1.90 79.68±5.83 89.85±2.04
Ionosphere 82.91±4.37 92.41±3.87 88.88±14.54 94.56±3.22

Advertisement 89.93±1.53 89.56±1.16 83.80±9.27 90.98±1.60

Table 1: The average classification accuracies and standard deviations (%) of four methods.
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Figure 1: Comparison of four methods on different data sets with increasing training sizes.

and therefore integrates the merits of MVL and MED. Dif-
ferent from existing approaches to exploiting multiple views,
we propose to use “margin consistency” to perform MVL,
and apply it to MVMED. We also give an instantiation of the
MVMED framework with a factorized prior, which is further
shown to be related to the multi-view method SVM-2K. Ex-
perimental results on real-world applications web-page clas-
sification, ionosphere classification and advertisement classi-
fication validate the effectiveness of the proposed MVMED.

Interesting future work directions include extending our
MVMED framework to more than two views, and applying
it to other learning scenarios such as semi-supervised learn-
ing and structure learning.
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